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Abstract

IMPORTANCE Machine learning algorithms could be used as the basis for clinical decision-making
aids to enhance clinical practice.

OBJECTIVE To assess the ability of machine learning algorithms to predict dementia incidence
within 2 years compared with existing models and determine the optimal analytic approach and
number of variables required.

DESIGN, SETTING, AND PARTICIPANTS This prognostic study used data from a prospective cohort
of 15 307 participants without dementia at baseline to perform a secondary analysis of factors that
could be used to predict dementia incidence. Participants attended National Alzheimer Coordinating
Center memory clinics across the United States between 2005 and 2015. Analyses were conducted
from March to May 2021.

EXPOSURES 258 variables spanning domains of dementia-related clinical measures and risk factors.

MAIN OUTCOMES AND MEASURES The main outcome was incident all-cause dementia diagnosed
within 2 years of baseline assessment.

RESULTS In a sample of 15 307 participants (mean [SD] age, 72.3 [9.8] years; 9129 [60%] women
and 6178 [40%] men) without dementia at baseline, 1568 (10%) received a diagnosis of dementia
within 2 years of their initial assessment. Compared with 2 existing models for dementia risk
prediction (ie, Cardiovascular Risk Factors, Aging, and Incidence of Dementia Risk Score, and the
Brief Dementia Screening Indicator), machine learning algorithms were superior in predicting
incident all-cause dementia within 2 years. The gradient-boosted trees algorithm had a mean (SD)
overall accuracy of 92% (1%), sensitivity of 0.45 (0.05), specificity of 0.97 (0.01), and area under the
curve of 0.92 (0.01) using all 258 variables. Analysis of variable importance showed that only 6
variables were required for machine learning algorithms to achieve an accuracy of 91% and area
under the curve of at least 0.89. Machine learning algorithms also identified up to 84% of
participants who received an initial dementia diagnosis that was subsequently reversed to mild
cognitive impairment or cognitively unimpaired, suggesting possible misdiagnosis.

CONCLUSIONS AND RELEVANCE These findings suggest that machine learning algorithms could
accurately predict incident dementia within 2 years in patients receiving care at memory clinics using
only 6 variables. These findings could be used to inform the development and validation of
decision-making aids in memory clinics.

JAMA Network Open. 2021;4(12):e2136553. doi:10.1001/jamanetworkopen.2021.36553

Key Points
Question Can machine learning

algorithms accurately predict 2-year

dementia incidence in memory clinic

patients and how do these predictions

compare with existing models?

Findings In this prognostic study of

data from 15 307 memory clinic

attendees without dementia, machine

learning algorithms were superior in

their ability to predict incident dementia

within 2 years compared with 2 existing

predictive models. Machine learning

algorithms required only 6 variables to

reach an accuracy of at least 90%, and

had an area under the receiver operating

characteristic curve of 0.89.

Meaning These findings suggest that

machine learning algorithms could be

used to accurately predict 2-year

dementia risk and may form the basis for

a clinical decision-making aid.
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Introduction

Many patients assessed in specialist settings, such as memory clinics, do not have dementia when
they first attend.1 Differentiating between patients who go on to develop dementia within a clinically
relevant timeframe and those who remain dementia-free is important, as that insight can be used to
prioritize patients for follow-up investigations and interventions. Identifying patients at high risk of
developing dementia is challenging for clinicians. One approach is to focus on those who have mild
cognitive impairment (MCI) when initially assessed and invite these patients for follow-up. However,
this can result in considerable misclassification for patients who are not targeted for follow-up but
who develop dementia and patients who are targeted for further investigations but do not develop
dementia. Most memory clinic patients with MCI do not progress to dementia even after 10 years,
with an annual conversion rate of 9.6%.2

Clinical decision-making aids may improve the ability of clinicians to estimate dementia onset.
Existing clinical decision-making aids are available to estimate medium- and long-term incidence of
dementia in different populations. For example, the Cardiovascular Risk Factors, Aging, and
Incidence of Dementia (CAIDE) Risk Score3 was designed to predict risk for developing dementia in
20 years for middle-aged people, and the Brief Dementia Screening Indicator (BDSI)4 aims to identify
elderly patients to target for cognitive screening by determining their risk of developing dementia in
6 years. However, to our knowledge, no clinical decision-making aid has been developed to predict
dementia incidence in memory clinics over a shorter clinically relevant period.

Machine learning (ML) allows for the leverage of information from large and complex data sets.
Recently, it has been applied to dementia diagnosis and risk prediction.5-9 However, these models
often incorporate information not typically available in routine clinical practice, such as advanced
neuroimaging, genetic testing, and cerebrospinal fluid biomarkers, limiting clinical application to
specialist or research settings.

We investigated whether ML techniques can be used to predict the incidence of dementia over
a 2-year period using memory clinic data from the US National Alzheimer Coordinating Center
(NACC). We also examined the minimum set of variables required for ML models to reach full
diagnostic performance.

Methods

The NACC study received ethical approval from each site’s institutional review board before it could
contribute data, and all participants had provided informed written consent. This prognostic study
was deemed exempt from institutional ethical approval because we used previously collected
deidentified data. The data used in this study are available by data request to the NACC. This study is
reported in accordance with the Transparent Reporting of a Multivariable Prediction Model for
Individual Prognosis or Diagnosis (TRIPOD) reporting guideline. Data were analyzed from March to
May 2021.

Study Sample
We used previously collected data from the NACC Uniform Data Set (UDS).10 The UDS contains
prospective cohort data from the US National Institute on Aging Alzheimer Disease Center program
for multicenter collaborative research on Alzheimer disease and other neurodegenerative
disorders.11 Our data set consists of memory clinic data collected between September 2005 and
February 2015 from 30 Alzheimer Disease Centers located in the United States. The data set includes
participant and coparticipant sociodemographic characteristics, family history, functional status,12

behavioral symptoms (assessed with Neuropsychiatric Inventory Questionnaire results13),
neuropsychological test battery,14 and NACC clinical dementia diagnosis, assigned by each Alzheimer
Disease Center using published clinical diagnostic criteria based on the standardized UDS clinical
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evaluation. Details of the diagnostic criteria adopted by the UDS protocol and the associated
guidance have been published previously.15

We used UDS versions 1 and 2, which include 32 573 memory clinic attendees with a baseline
assessment. Although our models are designed to predict dementia incidence within 2 years, to
account for variation in the time between follow-up appointments, we included follow-up that
occurred within 29 months of the initial visit to ensure that the visit was either the first or second
follow-up appointment.

Outcome Variable
The outcome variable was incident all-cause dementia diagnosis within 29 months (approximately 2
years) of baseline assessment. This includes dementia subtypes, such as Alzheimer dementia,
dementia with Lewy bodies, vascular dementia, and other rarer subtypes. Alzheimer dementia was
diagnosed according to NINCSD-ADRDA criteria,16 vascular dementia was diagnosed according to
NINDS-AIREN criteria,17 Lewy body dementia (LBD) was diagnosed according to the third report of
the Dementia with Lewy Bodies Consortium criteria,18 and frontotemporal dementia was diagnosed
according to Neary and colleagues’ 1998 criteria.19

Candidate Predictors
We included all clinically relevant variables collected during the initial visit in versions 1 and 2 of the
UDS (eTable 1 in the Supplement). We excluded variables with free text values, such as names of
medications, and variables that were constant across all participants, such as visit number. Four
synthetic variables were generated to help with the evaluation of variable importance (these
variables should be ranked low); 3 of these variables were permutations of existing variables (1 binary,
1 categorical, and 1 numerical variable), and 1 variable was randomly generated from a normal
distribution. This resulted in a total of 258 variables.

The variables from the UDS incorporated into our models include participant demographic
characteristics (15 variables), coparticipant demographic characteristics (7 variables), family history
(3 variables), medical history (47 variables), medications (21 variables), physical (12 variables) and
neurological (4 variables) examination results, the Unified Parkinson Disease Rating Scale20 (UDPRS)
(28 variables), Clinical Dementia Rating (CDR) scale21 (8 variables), functional status (10 variables),
neuropsychological test battery (50 variables), Geriatric Depression Scale (17 variables), and a clinical
assessment of symptoms (32 variables). Of these variables, 239 (93%) were missing for at least 1
participant, and all participants had at least 1 variable missing.

Model Development
We implemented 4 ML algorithms22: logistic regression (LR),23 support vector machine (SVM),24

random forest (RF),25,26 and gradient-boosted trees (XGB)27 (eMethods in the Supplement). These
algorithms perform a classification task: they determine whether a participant falls into class 0
(predicted to remain dementia-free 29 months from baseline) or class 1 (predicted to experience
incident dementia within 29 months of baseline). The classification is based on variables recorded at
their first (baseline) memory clinic visit. To implement the ML algorithms, we used the Python
scikit-learn library (Python Software Foundation),28 with 5-fold cross validation (eMethods in the
Supplement). Missing values were imputed by sampling with replacement from nonmissing values.
All data processing and analysis was implemented in Python version 3.9, NumPy version 1.19.4, and
scikit-learn version 0.24.0.

Statistical Analysis
Model Evaluation
We evaluated the performance of all models by comparing their overall accuracy, sensitivity, and
specificity for decision thresholds prespecified in the literature (existing models) or a threshold of 0.5
(ML models), which equally weights false-positive and false-negative errors. Area under the receiver
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operating characteristic curve (AUC)29 was used to summarize model performance over all possible
thresholds and thus misclassification error weightings.30 Mean performance measures and SDs were
obtained through bootstrapping (eMethods in the Supplement).

Comparison With Existing Models
The BDSI and CAIDE are existing dementia risk prediction models that assign to patients a score
representing their risk of developing dementia over longer timescales. To derive the BDSI and CAIDE
risk scores, we selected variables from the UDS that most closely correspond to variables used
previously (eTable 2 in the Supplement). The performance of our ML models was compared with that
of the BDSI and CAIDE for predicting 2-year dementia incidence.

Model Performance Across Dementia Subtypes
Dementia can have a variety of causes, corresponding to different dementia subtypes. To assess the
ability of the ML models to identify different dementia subtypes, we divided the incident dementia
cases into Alzheimer dementia, LBD, vascular dementia, and other dementia subtypes. Using these 4
stratifications, we calculated the percentage of participants correctly classified (true-positive rate)
and compared the ROC curves for each ML model.

Investigation of Diagnostic Stability
The clinical diagnosis of dementia is known to incorporate patients who are initially misdiagnosed
(effectively both false-positive and false-negative errors).31 We define reversion as when a participant
who was diagnosed with dementia up to 2 years after their first memory clinic visit and subsequently
receives a diagnosis of no dementia (either MCI or unimpaired cognition) within 2 years of their
dementia diagnosis. Reasoning that these reversions are unstable diagnoses and likely to have been
the result of dementia misdiagnosis, we investigated the classification accuracy of ML models in a
sample of participants with reversion (eMethods in the Supplement). We used the cumulative
distribution function (CDF) of classification scores output by each ML model to compare participants
with reversion with patients who did develop dementia and patients who remained dementia free.

Results

After excluding 12 136 attendees with a diagnosis of dementia at baseline, 4557 attendees who did
not have any follow-up data, and 573 attendees who had their first follow-up more than 29 months
after their first visit, the final analytic sample contained 15 307 participants (mean [SD] age, 72.3 [9.8]
years; 9129 [60%] women and 6178 [40%] men). Sample characteristics are shown in Table 1.
Within 2 years of baseline, 1568 participants (10%) received a diagnosis of dementia. Of 1568
participants who received a diagnosis of dementia, 273 (17%) were diagnosed by a single clinician and
1216 (78%) were diagnosed by a consensus panel; for 79 participants (5%), the source of diagnosis

Table 1. Sample Characteristics

Characteristic

Participants, No. (%)

No incident dementia (n = 13 379) Incident dementia (n = 1568)
Age, mean (SD), y 72 (9.8) 75 (9.4)

Sex

Men 5376 (39) 802 (51)

Women 8363 (61) 766 (49)

Native English speaker 12 823 (93) 1471 (94)

Education, mean (SD), y 15.5 (3.2) 15.3 (3.3)

Dependent living 927 (7) 625 (40)

CDR sum, median (IQR) 0.0 (0.0-0.5) 1.5 (1.0-2.5)

Total MMSE score, mean (SD) 28.5 (1.8) 26.2 (2.7)
Abbreviations: CDR, Clinical Dementia Rating; MMSE,
Mini-Mental State Examination.
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was not specified. Key performance measures assessing the predictive power of each model are
given in Table 2. Compared with existing models, ML models were superior in their ability to predict
whether an individual would develop dementia within 2 years, and they outperformed existing
models on all measures. All ML models performed similarly well, with XGB having the greatest power
when measured by overall accuracy (92%) and AUC (mean [SD], 0.92 [0.01]). The receiver operating
characteristic curve for each model demonstrates the similarity among the ML models and their
superiority compared with the 2 existing risk models (Figure 1).

Model Performance Across Dementia Subtypes
To assess the ML model performance in different dementia subtypes, we divided the population into
4 dementia subtypes: Alzheimer dementia (1285 participants), LBD (82 participants), vascular
dementia (21 participants), and other dementia subtypes (180 participants). The LR model was best
at identifying Alzheimer dementia and other subtypes, correctly classifying 589 participants (46%)
with Alzheimer dementia and 99 participants (55%) with other subtypes. The SVM model performed
best on participants with LBD, correctly classifying 40 participants (49%). All models correctly
classified 7 participants (33%) with vascular dementia. Receiver operating characteristic curves
demonstrate that all models performed approximately equally well on each subtype (eFigure 1 in the
Supplement).

Table 2. Performance Measures for the Prediction of Incident All-Cause Dementia Over 2 Years

Performance measures

Mean (SD)

Existing modelsa Machine learning modelsb

BDSI CAIDE LR SVM RF XGB
Overall accuracy 0.83 (0.01) 0.76 (0.01) 0.92 (0.01) 0.92 (0.01) 0.92 (0.01) 0.92 (0.01)

Sensitivity 0.37 (0.03) 0.18 (0.02) 0.47 (0.05) 0.47 (0.05) 0.31 (0.05) 0.45 (0.05)

Specificity 0.88 (0.01) 0.82 (0.00) 0.97 (0.01) 0.97 (0.01) 0.98 (0.00) 0.97 (0.01)

Positive predictive value 0.23 (0.02) 0.10 (0.01) 0.62 (0.05) 0.64 (0.05) 0.68 (0.07) 0.66 (0.06)

Negative predictive value 0.92 (0.00) 0.90 (0.01) 0.94 (0.01) 0.94 (0.01) 0.93 (0.01) 0.94 (0.01)

Area under the curve 0.72 (0.01) 0.52 (0.02) 0.92 (0.01) 0.91 (0.01) 0.92 (0.01) 0.92 (0.01)

Abbreviations: BDSI, Brief Dementia Screening Indicator; CAIDE, Cardiovascular Risk
Factors, Aging and Incidence of Dementia; LR, logistic regression; RF, random forest;
SVM, support vector machine; XGB, gradient-boosted trees.

a Given values are for recommended thresholds.
b Values are for a decision threshold of 0.5.

Figure 1. Receiver Operating Characteristic Curves
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Investigation of Minimum Number of Variables
One potential drawback of using an ML approach is the large number of variables involved. As the
number of variables required by a model increases, implementation in a clinical setting becomes less
practical and interpretability of the model is impaired. To assess how many variables each ML model
required to achieve the equivalent predictive power to what we found using all 258 variables
(Table 2), we evaluated how AUC varied with the number of variables included in the models.
Specifically, we ranked the variables for each model by sorting them in descending order of
importance (ie, the discriminatory power of each variable according to the algorithm; eMethods in
the Supplement). We subsequently retrained each model with an increasing number of variables,
starting with the most important. We found that all models required only 22 variables to achieve
diagnostic performance statistically indistinguishable from their optimum mean performance
(Figure 2; eFigure 2 in the Supplement). The synthetic variables, added to ensure the validity of
variable importance assessment were not in the top 22 variables for any model, reflecting the fact
that after full diagnostic performance was reached, there was little information to strongly determine
the variable ranking.

Identification of Key Risk Factors
Out of the 22 most important variables for each model, only 5 were common to all models (ie, clinical
judgement of decline in memory, cognitive abilities, behavior, ability to manage affairs, or motor and
movement changes; time to complete Trail Making Test Part B; CDR: orientation impairment; CDR:
home and hobbies impairment; and level of independence). Of the remaining variables, there were
10 pairs that had a correlation greater than 0.7, indicating that they were similar variables (eTable 3 in
the Supplement). Accounting for this correlation by interchanging variables that were highly
correlated, we found that there were 6 highly predictive variables (clinical judgement of decline, time
to complete Trail Making Test Part B, 3 components of the CDR [orientation, memory, and home and
hobbies impairment], and level of independence) that were common to all ML models (eTable 4 in
the Supplement). Training each model using only these variables, we found that for LR and XGB,
there was no significant decrease in diagnostic performance: using this core set of 6 variables, these
models had mean (SD) accuracy of 91% (0%) for LR and 91% (1%) for XGB and mean (SD) AUC of
0.89 (0.01) for LR and 0.89 (0.02) for XGB (eTable 5 in the Supplement).

Diagnostic Stability
Of 1568 participants who received a diagnosis of dementia within 2 years, we identified 130 (8%) as
experiencing reversion who were likely initially misdiagnosed and therefore mislabeled for ML
purposes. We found that while reversions were only reported in 0.8% of participants, they

Figure 2. Area Under the Curve (AUC) vs the Number of Variables Used for Training for 4 Machine Learning Models
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accounted for 92 to 109 participants (7%-8%) of misclassified participants, with a small amount of
variation between models (Table 3). The RF model had the highest diagnostic stability, correctly
identifying 109 of 130 participants with reversion (84%) by classing them as predicted to be
dementia free at 2 years. To investigate the diagnostic stability of ML models, we removed the
participants with reversion during training (eMethods in the Supplement). After retraining the
models without reversions, we found that RF identified 106 participants who experienced reversions
(median [IQR], 82% [78%-82%]), SVM identified 93 participants who experienced reversions
(median [IQR], 72% [69%-74%]), and LR and XGB both identified 92 participants who experienced
reversions (median [IQR], 71% [68%-75%]). IQRs were obtained by bootstrapping participants who
experienced reversion.

To understand the difference between misclassified participants, participants with reversion,
and participants who developed dementia without reversion, we analyzed the CDFs of classification
scores obtained from each ML model. We found that the scores of misclassified participants, and
specifically participants with reversion, were different from participants who developed dementia
and those who did not (eFigure 3 in the Supplement). The CDFs of classification scores for
participants who did not develop dementia fell to the far left of each plot, indicating that the ML
models assigned these participants a low probability of developing dementia. Conversely, for
participants who did develop dementia, the CDFs fell to the right of the plots: they were assigned a
high probability of developing dementia. For all models, the distribution of scores for participants
with reversion fell to the left of that for participants who did develop dementia, meaning that
participants with reversion were assessed as having lower probability of developing dementia
according to these models.

Discussion

In this prognostic study, ML algorithms had superior prognostic accuracy compared with BDSI and
CAIDE at predicting dementia incidence within 2 years of a patient’s first memory clinic assessment.
Two of the ML algorithms assessed achieve an accuracy of 91% and AUC of 0.89 with only 6 key
variables. Sensitivity analyses suggest that ML models could correctly classify a high proportion of
participants who experienced reversion who were potentially misdiagnosed within 2 years of their
initial visit. This study has several strengths, including the large sample of patients derived from
multiple memory clinics across the United States, the wide range of ML techniques used, the
benchmarking against existing risk models, and the exploration of diagnostic stability and probable
misdiagnosis.

Prior studies into the use of ML for predicting dementia risk have focused on conversion from
unimpaired cognition to Alzheimer dementia or MCI,6,8 or conversion from MCI to Alzheimer

Table 3. Diagnostic Stability and Model Predictions Among Patients Who Were Initially Diagnosed With Dementia Within 2 Years of Their Baseline Assessment

Diagnosis status

Patients, No. (%)

BDSI CAIDE LR SVM RF XGB
Correctly classified

Consistently diagnosed, model predicted to develop dementia 536 (37.3) 243 (16.9) 694 (48.3) 689 (47.9) 477 (33.2) 666 (46.3)

Diagnosis reversed, model predicted to stay dementia-freea 91 (70.0) 97 (74.6) 92 (70.8) 93 (71.5) 109 (83.8) 98 (75.4)

Misclassified

Consistently diagnosed, model predicted to stay dementia-free 902 (62.7) 1195 (83.1) 744 (51.7) 749 (52.1) 961 (66.8) 772 (53.7)

Diagnosis reversed, model predicted to develop dementiaa 39 (30.0) 33 (25.4) 38 (29.2) 37 (28.5) 21 (16.2) 32 (24.6)

Abbreviations: BDSI, Brief Dementia Screening Indicator; CAIDE, Cardiovascular Risk
Factors, Aging and Incidence of Dementia; LR, logistic regression; RF, random forest;
SVM, support vector machine; XGB, gradient-boosted trees.
a Patients considered as having their diagnosis reversed were initially diagnosed with

dementia within 2 years of their baseline visit whose diagnosis was subsequently

reversed to mild cognitive impairment or cognitively unimpaired within 2 years of
further follow-up suggesting probable misdiagnosis.
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dementia.5 These approaches are less useful in a clinical setting, as they exclude other types of
dementia5,6,8 or patients who are initially cognitively unimpaired.5 Data used in these studies
included positron emission tomography scans,5,8 and cerebrospinal fluid biomarkers,8 which are not
commonly available in a memory clinic setting. A study by Lin et al6 overcame this by using NACC
data to find a set of 15 noninvasive clinical variables to assess risk of conversion from unimpaired
cognition to MCI in a 4-year period. However, the construct of MCI remains somewhat
controversial,32 and conversion rates between MCI and dementia are often low.32,33 Our ML models
complement these analyses and have the advantage of incorporating only 6 key variables over a
clinically relevant timescale and predicting the outcome of all-cause dementia.

Of the existing models investigated in our study, the CAIDE model was the least accurate in
predicting dementia risk over 2 years, which is not surprising, given that it was developed to predict
long-term dementia risk in middle-aged adults over a much longer follow-up period of 20 years. The
BDSI performed better than the CAIDE, likely reflecting that it was designed for use in older adults
over a more moderate follow-up period of 6 years. However, all ML models outperformed these
existing models. Using all variables, XGB was the most powerful ML approach in predicting patients
who were likely to be diagnosed with dementia within 2 years, suggesting that the way in which new
decision trees are trained to correct the errors of the last tree results in a marginal performance gain.
However, XGB also seemed to be the approach least able to identify participants who experienced
reversion, ie, those who were initially diagnosed with dementia within 2 years and had that diagnosis
reversed within 2 years of the initial diagnosis.

The performance of ML models can be considerably reduced by mislabeled training data.34

Counterintuitively, excluding mislabeled training data does not always improve the performance.35

As the level of noise in the training data increases, the value of excluding or reducing that noise
decreases if the same noise is present in the validation data.36 Thus, filtering training data may even
reduce performance in validation data, as found in this study. However, when the level of mislabeling
is less than approximately 20% to 40%, removing mislabeled data can improve validation data
accuracy, even if that incorporates mislabeled data.35,37,38 This illustrates the importance of
investigating diagnostic stability in the training and validation data: even criterion standard data
incorporates errors.

The observed rate of reversion (8%) was similar to that found in a 2019 study based on a
different US population.31 In our study, the percentage of false positives was found to vary from 7%
to 19%, depending on the cognitive assessment used. To our knowledge, this is the first analysis of
potential misdiagnosis in the NACC UDS and suggests that using ML as a clinical decision-making aid
has the potential to reduce the misdiagnosis of false positives by up to 84%. Given that patients who
experience reversion are borderline in a diagnostic sense, from a clinical perspective, it may be
sensible that they are followed anyway, given that there have been grounds for clinical concern.
Thus, XGB may be the best model for a clinical decision-making aid. Alternatively, an ensemble
approach that makes secondary predictions about probable diagnostic stability and the potential for
misclassification may prove even more useful.

Limitations
This study has several limitations. First, both CAIDE and BDSI were developed using different
populations to the one used in this study. Not all variables used for the development of these models
had an exact equivalent in the UDS which may have affected their performance in this data set.
Second, the method used to impute the data may result in imputation error. Specifically, the
imputation replaces all missing values with a numerical value, yet some values are missing owing to
their relationship with another value; therefore, the fact that a value is missing is informative.
However, while participants had a mean of 14% missing data, the 6 key variables identified were
missing for a mean of 1% of participants. Third, although our study used a large sample of memory
clinic attendees in the United States, making our results highly applicable to this setting, the extent to
which these results will generalize to other populations is unknown.
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Conclusions

This prognostic study found that ML models outperformed existing dementia risk prediction models
and may have the potential to improve the prediction of incident dementia over 2 years in memory
clinics. Six key factors for dementia risk identified in this study may have the potential to improve
clinical practice in memory clinics if incorporated into future clinical decision-making aids.
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